2023

124. Polystyrene Upcycling into Fungal Natural Products and a Biocontrol Agent. [Read Article]

Rabot, C.; Chen, Y.; Lin, S.-Y.; Miller, B.; Chiang, Y.-M.; Oakley, C. E.; Oakley, B. R.; Wang, C. C. C.; Williams, T. J. Polystyrene Upcycling into Fungal Natural Products and a Biocontrol Agent. J Am Chem Soc 2023. https://doi.org/10.1021/jacs.2c12285.

123. Conversion of Polyethylenes into Fungal Secondary Metabolite. [Read Article]

Rabot, C., Chen, Y., Bijlani, S., Chiang, Y.M., Oakley, C.E., Oakley, B.R., Williams, T.J., & Wang, C.C.C., Angew. Chem. Int. 2022; https://doi.org/10.1002/ange.202214609.

 
 

2022

122. Manipulation of the Global Regulator mcrA Upregulates Secondary Metabolite Production in Aspergillus wentii Using CRISPR-Cas9 with In Vitro Assembled Ribonuclease. [Read Article]

Yuan, B., Keller, N.P., Oakley, B.R., Stajich J.E., & Wang, C.C.C., ACS Chemical Biology, 2022; 17, 2828-2835.

 
 

121. Total heterologous biosynthesis of fungal natural products in Aspergillus nidulans. [Read Article]

Chiang, Y.M., Lin, T.S. & Wang, C.C.C., Journal of Natural Products, 2022; 85, 2484-2518.

120. The International Space Station Environment Triggers Molecular Responses in Aspergillus niger. [Read Article]

Blachowicz, A., Romsdahl, J., Chiang, A.J., Masonjones, S., Kalkum, M., Stajich, J.E., Torok, T., Wang, C.C.C. & Venkateswaran, K., Frontiers in Microbiology, 2022; DOI:10.3389/fmicb.2022.893071.

119. Characterization of a silent azaphilone biosynthesis gene cluster in Aspergillus terreus NIH 2624. [Read Article]

Sun, W.W., Li, C.Y., Chiang, Y.M., Lin, T.S., Warren, S., Chang, F.R. & Wang, C.C.C., Fungal Genetics and Biology, 2022; 160, 103694.

 
 

118. Genomic Characterization of Potential Plant Growth-Promoting Features of Sphingomonas Strains Isolated from the International Space Station. [Read Article]

Lombardino, J., Bijlani, S., Singh, N.K., Wood, J.M., Barker, R., Gilroy, S., Wang, C.C.C., Venkateswaran, K., Microbiology Spectrum 2022; 10, e01994-21.

117. Genomic Characterizatio of the Titan-like Cell Producing Naganishia tulchinskyi, the First Novel Eukaryote Isolated from the International Space Station. [Read Article]

Bijlani, S., Parker, C., Singh, N.K., Sierra, M.A., Fox, J., Wang, C.C.C., Mason, C.E., Venkateswaran, K., Journal of fungi 2022; 8, 165.

2021

116. The sexual spore pigment asperthecin is rquired for normal ascospore production and protection from UV light in Aspergillus nidulans. [Read Article]

Palmer, J.M., Wiemann, P., Greco, C., Chiang, Y.M., Wang, C.C.C., Lindner, D.L., & Keller, N.P., Journal of Industrial Microbiology and Biotechnology 2021; 48, 9-10, kuab055.

115. Looking Ahead to 2030: Survey of Evolving Needs in Pharmacy Education.

Papadopoulos, V., Goldman, D., Wang, C.C.C., Keller, M., & Chen, S., Pharmacy: 2021; 9. 59.

114. An Aspergillus nidulans Platform for the Complete Cluster Refactoring and Total Biosynthesis of Fungal Natural Products. [Read Article]

Chiang, Y.M., Lin, T.S., Chang, S.L., Ahn, G., & Wang, C.C.C. ACS Synthetic Biology 2021; 10 (1), 173-182.

 
 

113. Advances in Space Microbiology. [Read Article]

Bijlani, S., Stephens, E., Singh, N.K., Venkateswaran, K., & Wang, C.C.C. iScience 2021; 24 (5), 102395.

112. Identification of the pigment and its role in UV resistance in Paecilomyces variotii, a Chernobyl isolate, using genetic manipulation strategies. [Read Article]

Lim, S., Bijlani, S., Blachowicz, A., Chiang, Y.M., Lee M.S.,Torok T., Venkateswaran, K., & Wang, C.C.C. Fungal Genetics and Biology 2021; 152. 103567.

 
 

111. Methylobacterium ajmalii sp. nov., isolated from the International Space Station. [Read Article]

Bijlani, S., Singh, N.K., Eedara, V.V., Podile, A.R., Mason, C.E., Wang, C.C.C., & Venkateswaran K. Frontiers in Microbiology 2021; 12. 534.

2020

110. Metabolomic analysis of Aspergillus niger isolated from the International Space Station reveals the radiation resistance potential of pyranonigrin A. [Read Article]

Romsdahl, J., Blachowicz, A., Chiang, Y.M., Venkateswaran K. & Wang, C.C.C.* Front. Microbiol 2020; 11:931. DOI:10.3389/fmicb.2020.00931.

109. Contributions of Spore Secondary Metabolites to UV-C Protection and Virulence Vary in Different Aspergillus fumigatus Strains. [Read Article]

Blachowicz, A., Lim, F.Y., Raffa, N., Knox, B., Choera, T., Bok, J.W., Huttenlocher, A., Wang, C.C.C., Venkateswaran K., & Keller, N.P. mBio 2020; 11(1):e03415-19.

108. Natural products development under epigenetic modulation in fungi.

Li, C.Y., Chung, Y.M., Wu, Y.,C., Hunyadi, A., Wang, Wang, C.C.C., Chang, F.R., Phytochemistry Reviews 2020; 1323-1340.

107. Draft Genome Sequences of Sphingomonas Species Associated with the International Space Station.

Bijlani, S., Singh, N.K., Mason, C.E., Wang, C.C.C., Venkateswaran, K., Microbiology resource announcements 2020; 9. (25):e00578-20.

106. Draft Genome Sequences of Tremellomycetes Strains Isolated from the International Space Station.

Bijlani, S., Singh, N.K., Mason, C.E., Wang, C.C.C., Venkateswaran, K., Microbiology resource announcements 2020; 9, (26):e00504-20. 

105. Identification and Validation of an Aspergillus nidulans secondary metabolite derivative as an inhibitor of the Musashi-RNA interaction.

Lan, L., Liu, J., Xing, M., Smith, A.R., Wang, J., Wu, X., Appelman, C., Li, K., Roy, A., Rowthaman, R., Karanicola, J., Somoza., A.D., Wang, C.C.C., Miao, Y., Guzman, R.D., Oakley, B.R., Neufield., K.L., Xu, L. Cancer 2020; 12:2221.

 

2019

104. Discovery and Elucidation of the Biosynthesis of Aspernidgulenes: Novel Polyenes from Aspergillus Nidulans by Using Serial Promoter Replacement. [Read Article]

Lin, T.S., Chen B., Chiang, Y.M., & Wang, C.C.C. ChemBioChem 2019; 20 (3), 329-334.

103. Recent advances in genome mining of Aspergillus secondary metabolites (covering 2012-2018). 

Romsdahl, J. & Wang, C.C.C. MedChemComm 2019; DOI: 10.1039/C9MD00054B. 

102. Genomic characterization and virulence potential of two Fusarium oxysporum isolates cultured from the International Space Station. 

Urbaniak, C., van Dam, P., Zaborina, A., Zaborina, O., Gilbert, J. Torok, T., Wang, C.C.C.* & Venkateswaran K. mSystems 2019; 4(2), e00345-18.

101. Proteomic and Metabolomic Characteristics of Chernobyl-­ and ISS-Isolated Fungi Under Simulated Mars Conditions.

Blachowicz, A., Chiang A.J., Elsaesser, A., Kalkum, M., Ehrenfreund, P., Stajich, J.E., Torok, T., Wang, C.C.C.*& Venkateswaran K. Submitted to Frontier in Microbiology DOI: 10.3389/fmicb.2019.01013.

100. Proteomic characterization of Aspergillus fumigatus isolated from air and surfaces of the International Space Station.

Blachowicz, A., Chiang, Romsdahl, J., A., Kalkum, M., & Wang, C.C.C. & Venkateswaran K. Fungal Genetics and Biology 2019; 124, 39-46.

99. Epigenetic manipulation induces the production of the coumarin-Type secondary metabolite from Arthrobotrys foliicola.

Li, C.Y., Lo, I.W., Wang, S.W., Tsai, Y.H., Chung, Y.M., Cheng, Y.B., Hwang, T.L., Wang, C.C.C.,Chang, F.R., Wu, Y.C.,  Israel Journal of Chemistry 2019; doi:10.1002/ijch.201800162.



2018

98. Hybrid Transcription Factor Engineering Activates the Silent Secondary Metabolite Gene Cluster for (+) –Asperlin in Aspergillus nidulans.

Grau, M., Entwistle, R., Chiang, Y.M., Ahuja, M., Oakley, C., Akashi, T., Wang, C.C.C., Todd, R. & Oakley B.R., ACS Chemical Biology 2018; DOI:10.1021/acschembio.8b00679.

97.   Discovery and elucidation of the biosynthesis of aspernidgulenes, novel polyenes from Aspergillus nidulans, using serial promoter replacement. 

Lin, T.S., Chen, B., Chiang, Y.M. & Wang, C.C.C.* Chembiochem 2018; DOI:10.1002/cbic.201800486.

96.   Influence of International Space Station Conditions on Fungal ‘Omics’ in Aspergillus nidulans.

Romsdahl, J., Blachowicz, A., Chiang, A Chiang, Y.M. Yaegashi, J., Countryman, S., Karouia, F.,  Kalkum, M.,  Stajich, J.E., Venkateswaran K & Wang, C.C.C.  Applied Microbiology and Biotechnology 2018; In press.

95.  Mating-type factor-specific regulation of the fumagillin/pseurotin secondary metabolite supercluster in Aspergillus fumigatus

Yu,Y., Blachowicz, A., Will, C., Szewczyk, E., Glenn, S., Gensberger-Reigl, S., Wang, C.C.C., Krappmann, S.,  Molecular Microbiology 2018; DOI:10.1111/mmi.14136.

94.   Persistence of fungi in atypical, closed environments: Cultivation to Omics.

Blachowicz, A., Venkateswaran K. & Wang, C.C.C.* Methods in Microbiology. 

93.   Genome-Based Deletion Analysis in Aspergillus terreus Reveals the Acetylaranotin bis-Thiomethylation Gene. 

Sun, W.W., Jillian Romsdahl, Guo, C.J. & Wang, C.C.C.* Fungal Genetics and Biology2018, 119, 1-6.

92.   Expanding the chemical space of Nonribosomal Peptide Synthetase-like Enzymes by domain and tailoring enzyme recombination.

van Dijk, J.W.A., Guo, C.J. & Wang, C.C.C.*  Org. Lett2018; 20 (17) 5082-5085.

91.   Characterization of Aspergillus niger isolated from the International Space Station.

Romsdahl, J., Blachowicz, A., Chiang, Singh, N., Stajich, J., A., Kalkum, M., Venkateswaran K. & Wang, C.C.C.*  mSystems 2018; 3(5), e00112-118.

90.   Baicalein Eliminates Liver Tumor Initiating Stem-Like Cells Resistant to mTORC1 Inhibition by Blocking GTPase Mediated Autophagy.

Wu, R., Murali, R., Kabe, Y., French, S.W., Chiang, Y.M., Liu, S., Lazaro, R., Wang, C.C.C., Louie, S., Tsukamoto, H.  Hepatology 2018; DOI:10.1002/hep.30071.

2017

89. Draft genome sequences of Several Fungal Strains Selected for Exposure to Microgravity at the international space station. 

Singh, N.K., Blachowicz, A., Romsdahl, J., Wang, C.C.C., Torok, T. & Venkateswaran K.* Genome Announc. 2017; 5, e01602-16.

88. The fungal natural product azaphilone-9 binds to HuR and inhibits HuR-RNA interaction in vitro. 

Kaur, K., Wu, X., Fields, J.K., Johnson, D.K., Lan, L., Pratt, M., Somoza, A.D., Wang, C.C.C., Oakley, B.R., & Guzman, R.N.D. PloS one 2017; 12(4), e0175471.

87. Overexpression of a three-gene conidial pigment biosynthetic pathway in Aspergillus nidulans reveals the first NRPS known to acetylate tryptophan. 

Sung, C.T., Chang, S.L., Entwistle, R., Ahn, G., Lin, T.S., Petrova, V., Yeh, H.H., Praseuth, B., Chiang, Y.M., Oakley, B.R. & Wang, C.C.C.  Fungal Genetics and Biology 2017; 101:1-6.

86. Discovery of McrA, a master regulator of Aspergillus secondary metabolism.

Oakley, C.E., Ahuja, M., Sun, W.W., Entwistle, R., Akashi, T., Yaegashi, J., Guo, C.J., Cerqueira, G.C., Wortman, J.R., Wang, C.C.C., Chiang, Y.M. & Oakley, B.R.  Molecular Microbiology 2017; 103, 347-365.

2016  

85. Engineering Fungal Nonribosomal Peptide Synthetase-like Enzymes by Heterologous Expression and Domain Swapping. 

van Dyck, J. & Wang, C.C.C.  Organic Letter 2016; in press.

84. Characterization of Aspergillus fumigatus isolates from Air and Surfaces of the International Space Station.

Knox, B.P., Blachowicz, A., Palmer, J.M., Romsdahl, J., Huttenlocher, A., Wang, C.C.C., Keller, N. P. & Venkateswaran, K. mSphere 2016; 1, e00227-16.

83.  Draft Genome Sequences of Two Aspergillus fumigatus strains, isolated from the International Space Station.

Singh,N.K., Blachowicz, A., Checinska, A., Wang, C.C.C. & Venkateswaran K.*  Genome Announcements 2016; 4, e00553-e00516.

82. Serial promoter exchanges in Aspergillus nidulans reveal the biosynthetic pathway for fellutamide B, a proteasome inhibitor.

Yeh, H.H., Chang, S.L., Chiang, Y.M., Oakley, C.E., Ahuja, M., Bok, J., Keller, N., Oakley, B.R.* & Wang, C.C.C.* ACS Chemical Biology 2016; 11: 2275-2284.

81. Heterologous Expression of Fungal Secondary Metabolite Pathways in the Aspergillus nidulans Host System.

van Dyck, J. & Wang, C.C.C. Methods in Enzymology. Synthetic Biology and Metabolic Engineering in Plants and Microbes Part A, 1st Edition 2016; Accepted.

 

80. Biosynthetic Pathway of a Reduced Polyketide Product Citreoviridin in  Aspergillus terreus var. aureus Revealed by Heterologous Expression in Aspergillus nidulans.

Lin, T.S., Chiang, Y.M., Wang, C.C.C. Organic letters, 2016; DOI: 10.1021/acs.orglett.6b00299. PDF


79. Characterization of the product of a nonribosomal peptide synthetase-like (NRPS-like) gene using the doxycycline dependent Tet-ON system in Aspergillus terreus.

Sun, W.W., Guo, C.J., Wang, C.C.C. Fungal Genetics & Biology, 2016; DOI:10.1016/j.fgb.2016.01.014. PDF

 



 

78. Microbial metabolomics in open microscale platforms.

Barkal, L., Theberge, A.B., Guo, C.J., Spraker, J., Rappert, L., Berthier, J., Brakke, K.A., Wang, C.C.C., Beebe, D.J., Keller, N.P., & Berthier, E.* Nature Communications, 2016; DOI: NCOMMS-15-10603A. PDF



2015







77. Development of Genetic Dereplication Strains in Aspergillus nidulans Results in the Discovery of Aspercryptin.

Chiang, Y.M., Ahuja, M., Oakley, C.E., Entwistle, R., Zutz, C., Wang, C.C.C. & Oakley, B.R.* Angew. Chem. Int. Ed., 2015; DOI: 10.1002/anie.201507097R1.





76. Genome Mining and Molecular Characterization of the Biosynthetic Gene Cluster of a Diterpenic Meroterpenoid, 15-Deoxyoxalicine B, in Penicillium canescens.

Yaegashi, J., Romsdahl, J., Chiang, Y.M. & Wang, C.C.C.* Chemical Sciences, 2015; DOI: 10.1039/C5SC01965F.

75. Spatial Regulation of a Common Precursor from Two Distinct Genes Generates Metabolite Diversity.

Guo, C.J., Sun, W.W., Bruno, K.S., Oakley, B.R., Keller, N.P. & Wang, C.C.C.*  Chemical Sciences, 2015; 6: 5913-5921. DOI: 10.1039/C5SC01058F. PDF

74. Azaphilones Inhibit Tau Aggregation and Dissolve Tau Aggregates in Vitro.

Paranjape, S.R., Riley, A.P., Somoza, A.D., Oakley, C.E., Wang, C.C.C., Prisinzano, T.E., Oakley, B.R. &  Gamblin, T. C.  ACS Chemical Neuroscience, 2015; 6: 751-760. DOI: 10.1021/acschemneuro.5b00013. PDF

73. Asperaculanes A and B, Two Sesquiterpenoids from the Fungus Aspergillus aculeatus.

Gao, Y.Q., Guo, C.J., Zhang, Q., Zhou, W.M., Wang, C.C.C.* & Gao, J.M.*  Molecules, 2015; 20, 325-334.

 

2014

72. Non-heme dioxygenase catalyzes atypical oxidations to form the 6,6-quinolone core of the viridicatin scaffold.

Ishikawa, N., Tanaka, H., Koyama, F., Noguchi, H., Wang, C.C.C., Hotta, K. & Watanabe, K. Angew. Chem. Int. Ed., 2014; 53: 12880-12884.

71. Molecular Genetic Characterization of Terreic Acid Pathway in Aspergillus terreus.

Guo, C.J., Sun, W., Bruno, K.S. & Wang, C.C.C.* Organic Letters, 2014; 16:5250-5253.

70. Rational Domain Swaps Reveal Insights About Chain Length Control by Ketosynthase Domains in Fungal Non-Reducing Polyketide Synthases.

Liu, T, Sanchez, J.F., Chiang, Y.M., Oakley, B.R. & Wang, C.C.C.* Organic Letters, 2014; 16: 1676-1679.

 

69. Recent advances in genome mining of secondary metabolites in Aspergillus terreus.

Guo, C.J. & Wang, C.C.C.* Frontiers Microbiology. 2014; DOI:10.3389/fmicb.2014.00717.

68. Recent advances in genome mining of secondary metabolite biosynthetic gene clusters and the development of heterologous host systems in Aspergillus nidulans.

Yaegashi, J., Oakley, B.R. & Wang, C.C.C.* Journal of Industrial Microbiology & Biotechnology, 2014; 41: 433-442.

67. Inhibition of Tau aggregation by Aspergillus nidulans secondary metabolites.

Paranjape, S., Chiang, Y.M.,  Sanchez, J.F., Entwistle, R., Wang, C.C.C., Oakley, B.R. & Gamblin, T.C.  Planta Medica, 2014; 80: 77-85.

66. Modulation of Cyclins, p53 and Mitogen-Activated Protein Kinases Signaling in Breast Cancer Cell Lines by 4-(3, 4, 5-Trimethoxyphenoxy) benzoic Acid.

Lee, K.H., Ho, W.Y., Wu, S. J., Omar, H.A., Huang, P.J., Wang, C.C.C. & Hung, J.H. International journal of molecular sciences, 2014; 15: 743-757.

65. Analyzing fungal secondary metabolite genes and gene clusters.

Chiang, Y.M., Wang, C.C.C.* & Oakley, B.R.* Natural Products: Discourse, Diversity and Design, Anne Osbourn, Rebecca Goss, Guy T. Carter ed., 2014; 10: 175-193.

 

2013

64. Prototype of an intertwined secondary metabolite supercluster.

Wiemann, P., Guo, C.J., Palmer, J.M., Sekonyela, R., Wang, C.C.C. & Keller, N.P.   Proceedings of the National Academy of Sciences 2013; 110: 17065-17070. PDF

63. Biosynthetic pathway for epipolythiodioxopiperaine acetylaranotin in Aspergillus terreus revealed by genome-based deletion analysis.

Guo, C.J., Yeh, H.H., Chiang, Y.M., Sanchez, J.F., Chang, S.L., Bruno, K.S. & Wang, C.C.C.* J. Am. Chem. Soc., 2013; 135: 7205-7213.

62. An efficient system for heterologous expression of secondary metabolite genes in Aspergillus nidulans.

Chiang, Y.M., Oakley, C.E., Ahuja, M., Entwistle, R., Schulz, A., Chang, S.L., Sung, C.T., Wang, C.C.C.,* & Oakley, B.R.* J. Am. Chem. Soc., 2013; 135: 7720-7731.

61. Application of an efficient gene targeting system linking secondary metabolites to their biosynthetic genes in Aspergillus terreus.

Guo, C.J., Knox, B.P., Sanchez, J.F., Chiang, Y.M., Bruno, K.S. & Wang, C.C.C.* Organic Letters, 2013; 15: 3562-3565.

60. VeA and MvlA repression of the cryptic orsellinic acid gene cluster in Aspergillus nidulans involves histone 3 acetylation.

Bok, J.W., Soukup, A. A. Chadwick, E. Chiang, Y.M., Wang, C.C.C. & Keller, N.P. Mol. Microbiology, 2013; 89: 963-974.

59. Analysis of a kinome-wide knockout library reveals the aspernidine A biosynthesis gene cluster in A. nidulans.

Yaegashi, J., Praseuth, M.B., Tyan, S.W., Sanchez, J.F., Entwistle, R., Chiang, Y.M., Oakley, B.R. & Wang, C.C.C.* Organic Letters, 2013; 15: 2862-2865.

58. Low-volume toolbox for the discovery of immunosuppressive fungal secondary metabolites.

Berthier, E., Lim, F.Y., Deng, Q., Guo, C.J., Dimitrios, K., Wang, C.C.C., Beebe, D.J., Huttenlocher, A. & Keller, N.P. Plos Pathogen, 2013; 10.1371/journal.ppat.0030050.

57. Reconstitution of the early steps of gliotoxin biosynthesis in A. nidulans reveals the role of the monooxygenase GliC.

Chang, S.L., Chiang, Y.M., Yeh, H.H., Wu, T.K.* & Wang, C.C.C.* Bioorganic and Medicinal Chemistry Letters, 2013; 23: 2155-2157.    

56. Engineering fungal non-reducing polyketide synthase by heterologous expression and domain swapping.

Yeh, H.H., Chang, S.L., Chiang, Y.M., Bruno, K.S, Oakley, B.R., Wu, T.K. & Wang, C.C.C.* Organic Letters, 2013; 15: 756-759.

55. bZIP transcription factors affecting secondary metabolism, sexual development and stress responses in Aspergillus nidulans.

Yin, Y.B., Reinke, A.W., Szilagyi, M., Emri, T., Chiang, Y.M., Keating, A.E., Pocsi, I., Wang, C.C.C. & Keller, N.P. Microbiology, 2013; 159: 77-88.

 

2012

54. Illuminating the genomic basis for natural product diversity in Aspergillus nidulans: determining the products of all aromatic polyketide synthases.

Ahuja, M., Chiang, Y.M., Chang, S.L., Praseuth, M.B., Entwistle, R., Sanchez, J.F., Lo, H.C., Yeh, H.H., Oakley, B.R. & Wang, C.C.C.* J. Am. Chem. Soc., 2012; 134: 8312-8221.

53. Two separate gene clusters encode the biosynthetic pathway for the meroterpenoids, austinol and dehydroaustinol in Aspergillus nidulans.

Lo, H.C., Entwistle, R., Guo, C.J., Manmeet A., Szewczyk, E., Hung J.H., Chiang, Y.M., Oakley, B.R. & Wang, C.C.C.* J. Am. Chem. Soc., 2012; 134: 4709-4720.

52. Molecular genetic characterization of a cluster in A. terreus for biosynthesis of the meroterpenoid terretonin.

Guo, C.J., Knox, B.P., Chiang, Y.M., Lo, H.C., Sanchez, J.F., Lee, K.H., Oakley, B.R., Bruno, K.S.* & Wang, C.C.C.* Organic Letters, 2012; 14: 5684-5687.

51. Endoplasmic reticulum stress stimulates p53 expression through NF-kB activation.

Lin, W.C., Chuang, Y.C., Chang, S., Lai, M.D., Teng, Y.N., Su, I.J., Wang, C.C.C., Lee, K.H. & Hung J.H. PLoS One, 2012; 7: e39120.

50. Overexpression of the Aspergillus nidulans histone 4 acetytransferase EsaA increases activation of secondary metabolite production.

Soukup, A.A., Chiang, Y.M., Bok, J.W., Reyes-Dominquez, Y., Oakley, B.R., Wang, C.C.C., Strauss, J. & Keller, N.P.* Mol. Microbiology, 2012; 86: 314-330.

49. The chemical identification and analysis of Aspergillus nidulans secondary metabolites.

Sanchez, J.F. & Wang, C.C.C.* Fungal Secondary Metabolism, Methods in Molecular Biology 2012; 944: 97-109.

48. Towards awakening cryptic secondary metabolite gene clusters in filamentous fungi.

Lim, F.Y., Sanchez, J.F., Wang, C.C.C.* & Keller N.P.* Methods in Enzymology, 2012; 517: 303-324.

47. Identification and molecular genetic analysis of the cichorine gene cluster in Aspergillus nidulans. MedChemComm. (Special Natural Product Themed Issue)

Sanchez, J.F., Entwistle, R., Corcoran, D., Oakley, B.R. & Wang, C.C.C.* 2012; 3: 997-1002.

46. Molecular genetic analysis reveals that a nonribosomal peptide synthetase-like (NRPS-like) gene in Aspergillus nidulans is responsible for microperfuranone biosynthesis.

Yeh, H., Chiang, Y.M., Entwistle, R, Ahuja, M., Lee, K.H., Bruno, K.S., Wu, T.K., Oakley, B.R. & Wang, C.C.C.* Applied Microbiology & Biotechnology 2012; 96: 739-748.

45.    Reengineering an azaphilone biosynthesis pathway in Aspergillus nidulans to create lipoxygenase inhibitors.

Somoza, A.D., Lee, K.H., Chiang, Y.M., Oakley, B.R. & Wang, C.C.C.* Organic letters 2012; 14: 972-975.

44. An Aspergillus nidulans bZIP response pathway hardwired for defensive secondary metabolism operates through aflR.

Yin, W.B., Amaike, S., Wohlbach, D., Gasch, A.P., Chiang, Y.M., Wang, C.C.C., Bok, J.W., Rohlfs & Keller, N.P., Mol. Microbiology 2012; 83: 1024-1034.

43. Sanchez, J.F., Somoza, A., Keller, N.P. & Wang, C.C.C.* Nat. Prod. Rep. 2012; 29: 351-371.

Advances in Aspergillus secondary metabolite research in the post-genomic era.

42. Rosmarinic acid and baicalin epigenetically de-repress Pparγ in hepatic stellate cells for their anti-fibrotic effect.

Yang, M.D., Chiang, Y.M., Higashiyama, R., Asahina, K., Mann, D.A., Mann, J., Wang, C.C.C. & Tsukamoto, H. Hepatology 2012; 55: 1271-1281.

 

2011

41. Liu, T., Chiang, Y.M., Somoza, A., Oakley, B.R. & Wang, C.C.C.* Engineering of an "unnatural" natural product by swapping polyketide synthase domains in Aspergillus nidulans. J. Am. Chem. Soc. 2011; 133: 13313-13314.

40. Li, A., Lin, H., Kuo, C.Y., Shih, H.M., Wang, C.C.C., Yen, Y. & Ann, D. High mobility group A2 protein modulates hTERT transcription to promote tumorigenesis. Molecular and Cellular Biology 2011; 31: 2605-2617.

39. Giles, S., Soukup, A., Lauer, C., Shabaan, M., Lin, A., Oakley, B.R., Wang, C.C.C.,  & Keller, N.P. Cryptic Aspergillus nidulans antimicrobials. Appl. Environ. Microbiol. 2011; 77: 3669-3675.

38. Sanchez, J.F.,  Entwistle, R., Hung, J., Yaegashi, J., Jain, S., Chiang, Y.M., Wang, C.C.C.* & Oakley B. R.* Genome-based deletion analysis uncovers the prenyl-xanthone biosynthesis pathway in Aspergillus nidulans. J. Am. Chem. Soc. 2011; 133: 4010-4017.

37. Chiang Y.M., Meyer, K. M., Praseuth, M.B., Baker, S.E., Bruno, K.S* & Wang, C.C.C.* Characterization of a polyketide synthase in Aspergillus niger whose product is a precursor for both dihydroxynaphthalene (DHN) melanin and naphtho-γ-pyrone. Fungal Genetics and Biology 2011; 48: 430-437.

36. Chiang, Y.M., Chang, S., Oakley B. R. & Wang, C.C.C.* Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms. Current Opinions in Chemical Biology 2011; 15: 137-143.

35. Hung, J.H., Teng, Y.N., Wang, L. H., Su, I.J., Wang, C.C.C, Huang, W., Lee, K.H., Lu, K.Y. & Wang, L.H. Induction of bcl-2 expression by hepatitis B virus pre-s2 mutant large surface protein resistance to 5-Fluorouracil treatment in huh-7 cells. PLoS ONE 2011; 6: e28977.

 

2010

34. Palmer, J.M., Mallaredy, S., Perry, D.W., Sanchez, J.F., Thiesen, J.M., Szewczyk, E. Oakley, B.R., Wang, C.C.C., Keller, N.P. & Mirabito, P.M. Telomere position effect is regulated by heterochromatin associated proteins and NkuA in Aspergillus nidulans. Microbiology 2010; 156: 3522-3531.

33. Chiang, Y.M., Keller, N.P., Oakley B.R. & Wang, C.C.C.*, Unraveling polyketide synthesis in members of the genus Aspergillus. Appl. Microbiol. & Biotech. 2010; 86: 1719-1736.

32. Chiang, Y.M., Szewczyk, E., Davidson, A.D., Entwistle, R., Keller, N.P., Wang, C.C.C.* & Oakley B.R.*, Genetic characterization of the monodictyphenone gene cluster in Aspergillus nidulans. Appl. Environ. Microbiol. 2010; 76: 2067-2074.

31. Wang, C.C.C., Chiang, Y.M., Praseuth, M.B., Kuo P. L., Liang, H. L. & Hsu Y. L. Asperfuranone from Aspergillus nidulans inhibits proliferation of human non-small cell lung cancer A549 cells via blocking cell cycle progression and inducing apoptosis. Basic & Clinical Pharmacology and Toxicology 2010; 107: 583-589.

30. Sanchez, J.F., Chiang, Y.M., Szewczyk, E., Davidson, A.D., Ahuja, M., Oakley, C.E., Bok, J.W., Keller N.P., Oakley B.R. & Wang, C.C.C.* Molecular genetic analysis of the orsellinic acid/F9775 gene cluster of Aspergillus nidulans. Mol. BioSyst. 2010; 6: 587-593.

 

2009

29. Bok, J.W., Chiang, Y.M., Szewczyk, E., Reyes-Dominguez, Y., Davidson, A.D., Sanchez, J.F., Lo, H.C., Watanabe, K., Strauss, J., Oakley B.R., Wang, C.C.C.* & Keller N.P.* Chromatin-level regulation of cryptic biosynthetic gene clusters in Aspergillus nidulans. Nature Chem. Biol. 2009; 5: 462-464.

28. Watanabe, K., Hotta, K., Nakaya, A., Praseuth, A.P., Wang, C.C.C., Inada, D., Takahashi, K., Fukushi E., Oguri, H. & Oikawa, H. Escherichia coli allows efficient modular incorporation of newly isolated quinomycin biosynthetic enzyme into echinomycin biosynthetic pathway for rational design and synthesis of potent antibiotic unnatural natural product. J. Am. Chem. Soc. 2009; 131: 9347-9353.

27. Chiang, Y.M., Szewczyk, E., Davidson, A.D., Keller, N.P., Oakley, B.R.* & Wang, C.C.C.* A gene cluster containing two fungal polyketide synthases encodes the biosynthetic pathway for a polyketide, asperfuranone, in Aspergillus nidulans. J. Am. Chem. Soc. 2009; 131: 2965-2970.

26. Chiang, Y.M., Lee, K., Sanchez J.F., Keller, N.P.* & Wang, C.C.C.* Unlocking fungal cryptic natural products. Nat. Prod. Comm. 2009; 5: 1505-1510.

25. Watanabe, K., Hotta, K., Praseuth, A.P., Searcey, M., Wang, C.C.C., Oguri, H. & Oikawa, H., Rationally engineered total biosynthesis of a synthetic analogue of a natural quinomycin depsipeptide in Escherichia coli. Chembiochem 2009; 10: 1965-1968.

24.    Li, A., Lee, M. B. Lin, H., Wang, C.C.C., Yen, Y., Chen B., David, C. & Ann, D., Suppression of non-homologous end joining repair by overexpression of HMGA2. Cancer Research 2009; 69: 5699-5706.

Publications prior to tenure evaluation:

 

2008

23. Szewczyk, E., Chiang, Y.M., Oakley, E., Davidson, A. D., Wang, C.C.C.* & Oakley B. R.* SUMO     regulation of secondary metabolite production in Aspergillus nidulans: Identification of the asperthecin gene cluster. Appl. Environ. Microbiol. 2008; 74: 7607-7612.

22. Sanchez, J.F., Chiang Y.M. & Wang, C.C.C.* Diversity of polyketide synthases found in the Aspergillus and Streptomyces Genomes. Mol. Pharm. 2008; 5: 226-233.

21. Praseuth, A.P., Wang, C.C.C.*, Watanabe, K.*, Hotta, K., Oguri, H. & Oikawa, H., Complete sequence of biosynthetic gene cluster responsible for producing triostin A and evaluation of quinomycin-type antibiotics from Streptomyces triostinicus. Biotechnol. Prog. 2008; 24: 1226-1231.

20. Wang, C.C.C., Chiang, Y.M., Kuo, P. L., Chang, J. K. & Hsu, Y. L. Norsolorinic acid inhibits proliferation of  T24 human bladder cancer cells via arresting the cell cycle at G0/G1 phase and inducing Fas/mFas ligand mediated apoptotic pathway. Clin. Exp. Pharmacol. Physiol. 2008; 35: 1301-1308.

19. Chiang, Y.M., Szewczyk, E., Nayak, T., Sanchez, J.F., Lo, H., Simityan, H., Kuo, E., Praseuth, A.P., Watanabe, K., Oakley, B.R.* & Wang, C.C.C.* Molecular genetic mining of the Aspergillus Secondary Metabolome: Discovery of the emericellamide biosynthetic pathway. Chem. Biol. 2008; 15: 527-532.

18. Wang, C.C.C., Chiang, Y.M., Kuo, P.L., Chang, J.K. & Hsu, Y. L. Norsolorinic Acid from Aspergillus nidulans inhibits the proliferation of human breast adenocarcinoma MCF-7 cells via Fas-mediated pathway. Basic Clin. Pharmacol. Toxicol. 2008; 102: 491-497.

17. Wang, C.C.C., Chiang, Y.M., Sung, S. C., Hsu, Y. L., Chang, J. K. & Kuo, P. L. Plumbagin induces cell cycle arrest and apoptosis through reactive oxygen species/c-Jun N-terminal kinase pathways in human melanoma A375.S2 cells. Cancer Lett. 2008; 259: 82-89.

16. Praseuth, A.P., Praseuth, M.B., Oguri, H., Oikawa, H., Watanabe, K. & Wang, C.C.C.* Improved production of triostin A in an engineered Escherichia coli with furnished quinoxaline chromophore by design of experiments in small-scale culture. Biotechnol. Prog. 2008; 24: 134-139.

 

2007

15. Zhang, W., Watanabe, K., Wang, C.C.C. & Tang, Y. Investigation of early tailoring reactions in the oxytetracycline biosynthetic pathway. J. Biol. Chem. 2007; 282: 25717-25725.

14. Ma, S. M., Zhan, J., Watanabe, K., Xie, X., Zhang, W., Wang, C.C.C. & Tang, Y. Enzymatic synthesis of aromatic polyketides using PKS4 from Gibberalla fujikuroi. J. Am. Chem. Soc. 2007; 129: 10642-10643.

13.  Marques, M., Citron, D. & Wang, C.C.C.* Development of Tyrocidine A analogues with improved antibacterial activity. Bioorg. Med. Chem. 2007; 15: 6667-6677.

12. Watanabe, K., Praseuth, A.P. & Wang, C.C.C.* A comprehensive and engaging overview of the type III family of polyketide synthase. Curr. Opin. Chem. Biol. 2007; 11: 279-286.

 

2006

11. Zhang, W., Watanabe, K., Wang, C.C.C. & Tang, Y. Heterologous biosynthesis of amidated polyketides with novel cyclization regioselectivity from oxytetracycline polyketide synthase. J. Nat. Prod. 2006; 11: 1633-1636.

10.  Xie, X., Watanabe, K., Wladyslaw A., Wang, C.C.C. & Tang, Y. Lovastatin acyltransferase with broad specificity. Chem. Biol. 2006; 13: 1161-1169.

9. Watanabe, K., Hotta, K., Praseuth, A.P., Koketsu K., Migita A., Boddy C.N., Wang, C.C.C., Oguri, H. & Oikawa, H. Total biosynthesis of antitumor nonribosomal peptides in Escherichia coli. Nature Chem. Biol. 2006; 2: 398-400.

 

Publications from Postdoc, Grad and Undergrad

8. Hsu, C. F., Phillip, J. W., Trauger, J. W., Farkas, M. E., Belitsky, J. M., Heckel, A., Olenyuk, B. Z., Puckett, J. W., Wang, C.C.C. & Dervan, P. B. DNA Completion of a programmable DNA-binding small molecule library. Tetrahedron 2007; 63: 6146-6151.

7. Watanabe, K., Wang, C.C.C., Boddy, C. N., Cane, D. E. & Khosla, C. Understanding substrate specificity of polyketide synthase modules by generating hybrid multimodular synthases. J. Biol. Chem. 2003; 278: 42020–42026.

6. Pfeifer, B. A., Wang, C.C.C., Walsh, C. T. & Khosla, C. Biosynthesis of yersiniabactin, a complex polyketide/nonribosomal peptide, using Escherichia coli as a heterologous host. Appl. Environ. Microbiol. 2003; 69: 6698–6702.

5. Wang, C.C.C. & Dervan, P. B. Sequence specific recruitment of topoisomerase I by DNA binding polyamide-camptothecin conjugates. J. Am. Chem. Soc. 2001; 123: 8657–8661.

4. Wang, C.C.C., Ellervik, U. & Dervan, P. B. Expanding the recognition of the minor groove of DNA by incorporation of β-Alanine in hairpin polyamides. Bioorg. Med. Chem. 2001; 9: 653–657.

3. Ellervik, U., Wang, C.C.C. & Dervan, P. B. Hydroxybenzamide/pyrrole pair distinguishes T•A from A•T base pairs in the minor groove of DNA. J. Am. Chem. Soc. 2000; 122: 9354–9360.

2. Simanek, E. E., Wang, C.C.C., Whitesides, G. M., McBridge, M. T. & Palmore, G. T. R. Benzimidazolene-2-thiones: A new class of molecules for the engineering of molecular tapes in the organic solid state. Chem Mater. 1997; 9: 1954–1961.

1. Simanek, E. E., Isaacs, L., Li, X. H., Wang, C.C.C. & Whitesides, G. M. Self-assembly of zinc porphyrins around the periphery of hydrogen-bonded aggregates that bear imidazole groups. J. Org. Chem. 1997; 62: 8994–9000.

 

 

Powered by Squarespace